Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 96: 104012, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36372389

RESUMO

As a plasticizer, di-2-ethylhexyl phthalate (DEHP) has been listed as a potential endocrine disruptor by The World Health Organization. The toxicity of DEHP has been widely studied, but its toxicity on the digestive tract of birds has not been clarified. Female quail were treated by gavage with DEHP (250, 500, 750 mg/kg), with the blank and vehicle control groups reserved. The result showed that DEHP raised the damage severity grade, and decreased the ratio of villus length to crypt depth. The content and activity of cytochrome P450 system (CYP450s) were increased by DEHP. DEHP interfered with the transcription of nuclear xenobiotic receptors (NXRs), CYP isoforms, and the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway. This study revealed DEHP could cause the imbalance in CYP450s mediated by NXRs, and then promote Nrf2 mediated antioxidant defense. This study provided new evidence about the mechanisms of DEHP-induced toxic effects on digestive tract.


Assuntos
Coturnix , Dietilexilftalato , Animais , Feminino , Coturnix/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Codorniz/metabolismo , Dietilexilftalato/toxicidade , Xenobióticos , Jejuno/metabolismo , Receptores Citoplasmáticos e Nucleares , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo
2.
Food Chem Toxicol ; 165: 113119, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35537648

RESUMO

Di-2-ethylhexyl phthalate (DEHP) has been widely used in many fields (agricultural products, medical instruments, and food packing). As an environmental contaminant, DEHP has a negative impact on human and animal health, and thus toxicity caused by DEHP is increasingly serious health concern. Nevertheless, DEHP-induced liver damage in quail remains unclear. To investigate the mechanism of liver damage caused by DEHP, male quail were treated with DEHP (250, 500, and 750 mg/kg) by gavage. Notably, DEHP exposure results in increased blood lipids and the accumulation of triglycerides (TG), total cholesterol (TC), and non-esterified fatty acid (NEFA) in the liver. Histopathological analysis showed that steatosis and inflammatory cell infiltration were observed in the liver tissue of quails exposed to DEHP. The results of Oil Red O staining displayed that DEHP induced lipid storage in the liver. Moreover, DEHP induced lipid metabolism disorders by activating the LXR/SREBP-1c and PPARα/γ signaling pathway. DEHP exposure obviously caused the up-regulation of pro-inflammatory cytokines (NF-κB, IL-6, IL-8, IL-1ß, and TNF-a). This study showed that DEHP could induce lipid metabolism disorders and inflammatory response via LXR/SREBP-1c/PPARα/γ and NF-κB signaling pathways.


Assuntos
Dietilexilftalato , Transtornos do Metabolismo dos Lipídeos , Animais , Dietilexilftalato/metabolismo , Dietilexilftalato/toxicidade , Metabolismo dos Lipídeos , Transtornos do Metabolismo dos Lipídeos/induzido quimicamente , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/patologia , Fígado/metabolismo , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Ácidos Ftálicos , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
3.
Food Funct ; 12(11): 4855-4863, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33960999

RESUMO

Atrazine (ATR), a ubiquitous environmental contaminant in water and soil, causes environmental nephrosis. To reveal the toxic effect of ATR on the kidney and the potential chemical nephroprotective effect of lycopene (LYC), Kun-Ming mice of specific pathogen-free (SPF) grade were treated with LYC (5 mg kg-1) and/or ATR (50 mg kg-1 or 200 mg kg-1) for 21 days. The degree of renal injury was evaluated by measuring the ion concentration, ATPase activities and the mRNA expressions/levels of associated ATPase subunits. In addition, the expression of renal aquaporins (AQPs) was analyzed. The results showed that the renal tubular epithelial cells of ATR-exposed mice were swollen, the glomeruli were significantly atrophied, and the ion concentrations were obviously changed. The activity of Na+-K+-ATPase and the transcription of its subunits were downregulated. The activity of Ca2+-Mg2+-ATPase and the transcription of its subunits were upregulated. The expression of AQPs, especially the critical AQP2, was affected. Notably, ATR-induced nephrotoxicity was significantly improved by LYC supplementation. Therefore, LYC could protect the kidney against ATR-induced nephrotoxicity via maintaining ionic homeostasis, reversing the changes in ATPase activity and controlling the expression of AQPs on the cell membrane. These results suggested that AQP2 was a target of LYC and protected against ATR-induced renal ionic homeostasis disturbance.


Assuntos
Aquaporina 2/metabolismo , Atrazina/efeitos adversos , Homeostase , Rim/efeitos dos fármacos , Licopeno/farmacologia , Animais , Antioxidantes , Atrazina/toxicidade , Herbicidas/toxicidade , Rim/patologia , Masculino , Camundongos , ATPase Trocadora de Sódio-Potássio/metabolismo
4.
Metallomics ; 13(3)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33693771

RESUMO

Selenoprotein N (SEPN1) is critical to the normal muscular physiology. Mutation of SEPN1 can raise congenital muscular disorder in human. It is also central to maturation and structure of skeletal muscle in chicken. However, human SEPN1 contained an EF-hand motif, which was not found in chicken. And the biochemical and molecular characterization of chicken SEPN1 remains unclear. Hence, protein domains, transcription factors, and interactions of Ca2+ in SEPN1 were analyzed in silico to provide the divergence and homology between chicken and human in this work. The results showed that vertebrates' SEPN1 evolved from a common ancestor. Human and chicken's SEPN1 shared a conserved CUGS-helix domain with function in antioxidant protection. SEPN1 might be a downstream target of JNK pathway, and it could respond to multiple stresses. Human's SEPN1 might not combine with Ca2+ with a single EF-hand motif in calcium homeostasis, and chicken SEPN1 did not have the EF-hand motif in the prediction, indicating the EF-hand motif malfunctioned in chicken SEPN1.


Assuntos
Antioxidantes/metabolismo , Cálcio/metabolismo , Simulação por Computador , Músculo Esquelético/metabolismo , Selenoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Galinhas , Humanos , Mutação , Filogenia , Conformação Proteica , Domínios Proteicos , Selenoproteínas/química , Selenoproteínas/genética , Homologia de Sequência
5.
Sci Total Environ ; 741: 140293, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32610232

RESUMO

An increasing number of epidemiologic studies show that women have a special exposure profile to phthalates, and the exposures have attracted attention regarding their potential health hazards. Here, we developed a model for studying the ovarian action of di-(2-ethylhexyl) phthalate (DEHP) and its major metabolite monoethylhexyl phthalate (MEHP). In vivo, treatment with DEHP (250, 500, and 1000 mg kg^-1) induced decreased thickness of ovarian granulosa cell layer and mitochondrial damage in quail, caused oxidative stress, interfered with the transcription of hypothalamic-pituitary-ovarian axis (HPOA) steroid hormone-related factors (increased transcription of StAR, 3ß-HSD, P450scc, and LH and decreased transcription of 17ß-HSD, P450arom, FSH, and ERß), and blocked the secretion of steroid hormones (decreased FSH, E2, and T levels and increased LH, P, and PRL levels). In vitro, granulosa cells were cultured with MEHP (50, 100, and 200 µM), activator of PPARγ (rosiglitazone, 50 µM), or antagonist of PPARγ (GW9662, 10 µM) for 24 h and gene and protein expression were analyzed by real time RT-PCR and western blot. Rosiglitazone, like MEHP, significantly decreased mRNA and protein levels of P450arom. Antagonist GW9662 partially blocked the suppression of P450arom by MEHP, suggesting that MEHP acts through PPARγ, but not exclusively. Our model shows that MEHP acts on granulosa cells in quail by stimulating PPARs, which leads to decreased gene and protein expression of P450arom. Therefore, the environmental endocrine disruptor DEHP and its major metabolite MEHP act through a receptor-mediated signaling pathway to inhibit the production of estradiol, interfere with the modulation of HPOA, suppress the synthesis of sex hormones, and cause sex hormone secretion disorders, resulting in severe toxicity in the female reproductive system. A framework for an adverse outcome pathway of DEHP/MEHP-induced ovarian toxicity was constructed, which can facilitate an improved understanding of the mechanism of female reproductive toxicity.


Assuntos
Dietilexilftalato , Ovário , Codorniz , Animais , Coturnix , Feminino , Ovário/anormalidades , Ácidos Ftálicos
6.
Environ Pollut ; 261: 114162, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32078881

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP), a plasticizer that is mainly used in the production of polyvinyl alcohol-containing chloride products, has attracted attention due to potential threats to human health and the environment. Nevertheless, knowledge of DEHP-induced nephrotoxicity is still limited. To explore the mechanism of DEHP-induced nephrotoxicity, quail were treated with 0, 250, 500 and 1000 mg/kg DEHP by oral gavage for 45 days. Based on the results of histopathological analysis, DEHP exposure induced a disorganized renal structure, a partially dilated glomerulus and an atrophied Bowman's space. Renal tubular epithelial cells were unclear, and swelling of columnar epithelial cells was observed, suggesting that DEHP exposure caused renal disease and renal injury. Notably, DEHP interfered with the homeostasis of cytochrome P450 systems (CYP450s) by increasing the activities or contents of CYP450s (total CYP450, Cyt b5, ERND, APND, AH and NCR). The expression levels of certain CYP450 isoforms (CYP1A, CYP1B, CYP2C, CYP2D, CYP2J and CYP3A) were significantly downregulated in the kidney in DEHP-treated quail. Furthermore, DEHP induced the expression of nuclear receptors (AHR, CAR and PXR) in a dose-dependent manner. The results of this study suggested that DEHP-induced nephrotoxicity in quail was associated with the induction of nuclear xenobiotic receptor (NXR) responses and interference with CYP450 homeostasis. In conclusion, all data indicated that DEHP induced nephrotoxicity by triggering NXRs and modulating the cytochrome P450 system. The results of this study provide a new basis for understanding the nephrotoxicity of DEHP.


Assuntos
Coturnix , Dietilexilftalato , Animais , Sistema Enzimático do Citocromo P-450 , Humanos , Ácidos Ftálicos , Codorniz , Receptores Citoplasmáticos e Nucleares
7.
Environ Pollut ; 251: 984-989, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31234266

RESUMO

Di(2-ethylhexyl) phthalate (DEHP), as a widely used plasticizer, is reported to have widespread environmental and global health hazards. Trace amounts of phthalates in the environment are sufficient to disrupt ecological balance and affect human health. However, DEHP-induced splenic toxicity remains in an unknown state. Therefore, to explore the mechanism of DEHP-induced splenic toxicity, male quail were employed with 0, 250, 500 and 750 mg/kg body weight DEHP by daily gastric perfusion for 45 days. Notably, splenic corpuscular border and cell gap enlargement were observed in the spleen tissue of DEHP-exposed quail under the histopathological analysis. Furthermore, DEHP induced dysregulation of oxidative stress markers by increasing malondialdehyde (MDA) content and decreasing superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities. Low concentration of DEHP (≤250 mg/kg) exposure suppressed nuclear factor-E2-related factor 2 (Nrf2) signaling pathway, while high concentration of DEHP (≥500 mg/kg) exposure activated Nrf2-mediated defense response. DEHP induced splenic oxidative stress via interfering Nrf2 signal pathway and altering the transcription of its downstream genes. In conclusion, this study suggested that DEHP induced splenic toxicity.


Assuntos
Coturnix/fisiologia , Dietilexilftalato/toxicidade , Poluentes Ambientais/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Plastificantes/toxicidade , Baço/patologia , Animais , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Masculino , Malondialdeído/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Ácidos Ftálicos , Transdução de Sinais , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA